basic mathematics image
 basic mathematics image


Heron's formula


You can use Heron's formula to calculate the area of any triangle when you know the lengths of the three sides.

If you call the lengths of the three sides a, b, and c, the formula is :

A-triangle-image




A-triangle-image




S is called the semi-perimeter. The name makes sense because it is the perimeter divided by two.

Example #1:

Use Heron's formula to find the area of a triangle when a = 3 cm, b = 5 cm, and c = 4 cm

s = (3 + 5 + 4)/2 = 12/2 = 6

s − a = 6 − 3 = 3

s − b = 6 − 5 = 1

s − c = 6 − 4 = 2

s × (s − a) × (s − b) × (s − c) = 6 × 3 × 1 × 2 = 36

√(36) = 6

The area of this triangle is 6 cm2


Example #2:


Find the area of a triangle when a = 4 cm, b = 6 cm, and c = 8 cm

s = (4 + 6 + 8)/2 = 18/2 = 9

s − a = 9 − 4 = 5

s − b = 9 − 6 = 3

s − c = 9 − 8 = 1

s × (s − a) × (s − b) × (s − c) = 9 × 5 × 3 × 1 = 135

√(135) = 11.61

The area of this triangle is 11.61 cm2


Example #3:


Find the area of a triangle when a = 3/2 cm, b = 5/2 cm, and c = 2 cm

s = (3/2 + 5/2 + 2)/2 = (3/2 + 5/2 + 4/2)/2 = (12/2)/2 = 6/2 = 3

s − a = 3 − 3/2 = (6/2 − 3/2) = (6 − 3)/2 = 3/2

s − b = 3 − 5/2 = (6/2 − 5/2) = (6 − 5)/2 = 1/2

s − c = 3 − 2 = 1

s × (s − a) × (s − b) × (s − c) = 3 × 3/2 × 1/2 × 1 = 9/4

√(9/4) = 3/2

The area of this triangle is 1.5 cm2









Page copy protected against web site content infringement by Copyscape



















|Are you a fan of this site? Support us| |Our awards!| |Our partners| |About me| |Disclaimer| |Build your website!| |Advertise on my site| |Try our free toolbar| |Take our survey|
Copyright © 2008. Basic-mathematics.com. All right reserved