Rationalizing the denominator of a radical expression

Rationalizing a denominator is the process of removing the radical sign in the denominator of a radical expression.

Example #1:

$$ Rationalize \ \frac{3} {\sqrt{5}} $$
$$ Multiply \ by \ \frac{\sqrt{5}} {\sqrt{5}} $$

The reason we multiplied the denominator by square-root of 5 is because we want to make the denominator a perfect square. 

$$ Notice \ also \ that \ \frac{\sqrt{5}} {\sqrt{5}} = 1 $$

Therefore, it is like multiplying the expression by 1 which does not change the problem.

$$ \frac{3} {\sqrt{5}} = \frac{3} {\sqrt{5}} × \frac{\sqrt{5}} {\sqrt{5}} $$
$$ \frac{3} {\sqrt{5}} = \frac{3 \sqrt{5}} {\sqrt{25}} $$
$$ \frac{3} {\sqrt{5}} = \frac{3 \sqrt{5}} {5} $$


Example #2

$$ Rationalize \ \frac{ \sqrt{2}} {\sqrt{8n}} $$
$$ Multiply \ by \ \frac{\sqrt{2n}} {\sqrt{2n}} $$

Notice that if you had multiplied by square-root(8n), it will still be correct. Multiplying by square-root(2n) will give you smaller number to deal with though and that is better.

$$ \frac{\sqrt{2}} {\sqrt{8n}} = \frac{\sqrt{2}} {\sqrt{8n}} × \frac{\sqrt{2n}} {\sqrt{2n}} $$
$$ \frac{\sqrt{2}} {\sqrt{8n}} = \frac{\sqrt{2 × 2} × \sqrt{n}} {\sqrt{8n × 2n}}$$
$$ \frac{\sqrt{2}} {\sqrt{8n}} = \frac{\sqrt{4} × \sqrt{n}} {\sqrt{16n^2}}$$
$$ \frac{\sqrt{2}} {\sqrt{8n}} = \frac{2 × \sqrt{n}} {4n}$$
$$ \frac{\sqrt{2}} {\sqrt{8n}} = \frac{\sqrt{n}} {2n}$$


Rationalizing a denominator using conjugates

$$ Rationalize \ \frac{6} {\sqrt{5} - \sqrt{2}} $$
$$ Multiply \ by \ \ \frac{\sqrt{5} + \sqrt{2}} {\sqrt{5} + \sqrt{2}} $$
$$ \frac{6} {\sqrt{5} - \sqrt{2}} = \frac{6} {\sqrt{5} - \sqrt{2}} × \frac{\sqrt{5} + \sqrt{2}} {\sqrt{5} + \sqrt{2}} $$
$$ \frac{6} {\sqrt{5} - \sqrt{2}} = \frac{6 × (\sqrt{5} + \sqrt{2}) } { (\sqrt{5} - \sqrt{2})× (\sqrt{5} + \sqrt{2})} $$
$$ \frac{6} {\sqrt{5} - \sqrt{2}} = \frac{6 × (\sqrt{5} + \sqrt{2}) } { (\sqrt{5})^2 - (\sqrt{2})^2} $$
$$ \frac{6} {\sqrt{5} - \sqrt{2}} = \frac{6 × (\sqrt{5} + \sqrt{2}) } { 5 - 2} $$
$$ \frac{6} {\sqrt{5} - \sqrt{2}} = \frac{6 × (\sqrt{5} + \sqrt{2}) } { 2} $$
$$ \frac{6} {\sqrt{5} - \sqrt{2}} = 3 × (\sqrt{5} + \sqrt{2}) $$






Recent Articles

  1. How to estimate fractions

    Dec 11, 17 08:45 AM

    Learn how to estimate fractions with this easy to follow lesson.

    Read More

New math lessons

Your email is safe with us. We will only use it to inform you about new math lessons.

            Follow me on Pinterest





Recent Lessons

  1. How to estimate fractions

    Dec 11, 17 08:45 AM

    Learn how to estimate fractions with this easy to follow lesson.

    Read More

  Our Top Pages

Formula for percentage

Compatible numbers

Basic math test

Basic math formulas

Types of angles

Math problem solver

Algebra word problems

Surface area of a cube

Finding the average 

Scale drawings

Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!


Everything you need to prepare for an important exam!

K-12 tests, GED math test, basic math tests, geometry tests, algebra tests. 


Real Life Math Skills

Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.

 Recommended

Scientific Notation Quiz

Types of Angles Quiz

Graphing Slope Quiz

Adding and Subtracting Matrices Quiz  

Factoring Trinomials Quiz 

Solving Absolute Value Equations Quiz  

Order of Operations Quiz