If the first and third of three odd consecutive integers are added, the result is 87 less than five times the second integer.
Find the third integer.
Solution
Let 2n + 1 be the first odd integer
Let 2n + 3 be the second odd integer
Let 2n + 5 be the third odd integer
Adding the first and the third gives the following expression.
2n + 1 + 2n + 5
87 less than five times the second integer gives the following expression.
5 × (2n + 3) -87
If the first and third of three odd consecutive integers are added, the result is 87 less than five times the second integer.
The statement above gives the following equation
2n + 1 + 2n + 5 = 5 × (2n + 3) - 87
4n + 6 = 5 × 2n + 5 × 3 - 87
4n + 6 = 10n + 15 - 87
4n + 6 = 10n - 72
4n + 6 - 6 = 10n - 72 - 6
4n = 10n - 78
4n + 78 = 10n - 78 + 78
4n + 78 = 10n
4n - 4n + 78 = 10n - 4n
78 = 6n
Divide both sides by 6
78/6 = 6n/6
13 = n
The third integer is 2n + 5 or 2 × 13 + 5 = 26 + 5 = 31
Dec 11, 17 08:45 AM
Learn how to estimate fractions with this easy to follow lesson.
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.
Dec 11, 17 08:45 AM
Learn how to estimate fractions with this easy to follow lesson.
Our Top Pages
Formula for percentage
Compatible numbers
Basic math test
Basic math formulas
Types of angles
Math problem solver
Algebra word problems
Surface area of a cube
Finding the average
Scale drawings
Everything you need to prepare for an important exam!
K-12 tests, GED math test, basic math tests, geometry tests, algebra tests.
Real Life Math Skills
Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.