Geometry word problems

A variety of geometry word problems along with step by step solutions will help you practice lots of skills in geometry.

Word problem #1:

The measure of one supplementary angle is twice the measure of the second. What is the measure of each angle?

Let x be the measure of the first angle. Then, the second angle is 2x.

Since the angle are supplementary, they add up to 180°

x + 2x = 180°

3x = 180°

Since 3 × 60 = 180, x = 60

The measure of the first angle is 60°

The measure of the second is 2x = 2 × 60 = 120°

Word problem #2:

Without plotting the points, say if the points (2, 4), (2, 0), and (2, -6) are colinear.

If the x-coordinate or the y-coordinate is the same for all points, then the points are colinear.

After a close inspection, we see that the x-coordinate is the same for all points. Therefore, the points are colinear.

Word problem #3:

The perimeter of a square is 8 cm. What is the area?

If the perimeter is 8 cm, then the length of one side is 2 cm since 2 cm + 2 cm + 2 cm + 2 cm = 8 cm.

Area = 2 cm × 2 cm = 4 cm2.

Word problem #4:

A right triangle has acute angles whose measures are in the ratio 1:3

Find the measure of these acute angles.

Thing to know: The sum of the angles in a triangle is equal to 180°

Meaning of the ratio 1:3

This means that the second acute angle is 3 times bigger than the first acute angle.

Let x be the first acute angle, then the second acute angle will be 3x.

x + 3x + 90° = 180°

4x + 90° = 180°

4x + 90° - 90° = 180° - 90°

4x = 90°

Since 4 × 22.5 = 90°, x = 22.5°

The second angle is 3x = 3 × 22.5 = 67.5

The measure of the two acute angles are 22.5 and 67.5

Tricky and interesting geometry word problems

Word problem #5:

The midpoint of a segment is (3, 6). If one endpoint is (4, 7), what is the other endpoint?

Suppose x1 is the missing x-coordinate of the other endpoint.

To get the x-coordinate of the midpoint, you will need to do the math below:

x1 + 4 / 2
= 3

x1 = 2 since 2 + 4 = 6 and 6 divided by 2 = 3

Suppose y1 is the missing y-coordinate of the other endpoint.

To get the y-coordinate of the midpoint, you will need to do the math below:

y1 + 7 / 2
= 6

y1 = 5 since 5 + 7 = 12 and 12 divided by 2 = 6

The other endpoint is (2, 5)

Word problem #6:

The sum of the measures of the angles of an n-gon is 2340°. How many sides does this n-gon have?

To solve this problem, you need to know the following formula:

Sum of the angles in an n-gon = (n - 2)× 180°

n is the number of sides. So just plug in the numbers and solve.

2340° = (n - 2)× 180°

2340° = 180°n - 360°

2340° + 360° = 180°n - 360° + 360°

2700° = 180°n

Divide both sides 180°

(2700° ÷ 180°) = (180° ÷ 180°)n

15 = n

The n-gon has 15 sides

Word problem #7:

If two lines are perpendicular, what is the slope of the first line if the second line has a slope of 5.

When two lines are perpendicular, the following equation is true

Let m1 × m2 = -1

m1 is the slope of the first line and m2 is the slope of the second line

Thus, m1 × 5 = -1

Divide both sides of this equation by 5

(m1 × 5 ÷ 5) = (-1 ÷ 5)

m1 =
-1 / 5
= - 0.20

Word problem #8:

The diameter of a penny is 0.750 inch and the diameter of a quarter is 0.955 inch.

You put the penny on top and exactly in the middle of the quarter. Since the coin is smaller, it will not cover completely the quarter.

What is the area of the portion that is not covered? Will the area change if the coin is not centered?

We can use A = πr2 since the coin is shaped like a circle.

Let B stand for the area of the portion not covered.

B = area of quarter - area of penny

r = 0.375 inch for the penny and r = 0.4775 for the quarter

B = 3.14 × 0.4775 × 0.4775 - 3.14 × 0.375 × 0.375

B = 0.715 - 0.441

B = 0.274 inch2

As long as the coin remains inside the quarter, the area that is not covered should stay the same.

Want more geometry word problems? Check the ebook below

Geometric formulas ebook

The ebook above will show you how to solve many more geometry word problems as you explore some important geometric formulas. Scroll down to see even more geometry word problems posted users.

Have Some Great Geometry Word Problems ?

Do you have a great geometry word problem ? Share it here with the solution!

[ ? ]

Upload 1-4 Pictures or Graphics (optional)[ ? ]


Click here to upload more images (optional)

Author Information (optional)

To receive credit as the author, enter your information below.

(first or full name)

(e.g., City, State, Country)

Submit Your Contribution

  •  submission guidelines.

(You can preview and edit on the next page)

What Other Visitors Have Said

Click below to see contributions from other visitors to this page...

Length of a ladder and the Pythagorean theorem Not rated yet
A ladder is resting against a wall. The top of the ladder touches the wall at a height of 18 ft. Find the length of the ladder if the length is 6 ft more …

Three angles in triangle  Not rated yet
If one angle is 57 degrees and the second is 2 times the third, what are the three angles? The sum of the angles in a triangle is equal to 180. Let …

A Geometry problem involving triangles Not rated yet
ACEF and ACDB are rectangles. BDEF is a square and the length of each side is 1 unit. If BG has a length of a, then what will be the length of AB? …

A least common multiple word problem about caring for a lawn Not rated yet
Baxter waters the lawn every 3 days and mows it every 7 days. He both watered and mowed the lawn July 2. When will he next water and mow on the same …

Click here to write your own.

Recent Articles

  1. How To Find The Factors Of 20: A Simple Way

    Sep 17, 23 09:46 AM

    Positive factors of 20
    There are many ways to find the factors of 20. A simple way is to...

    Read More

  2. The SAT Math Test: How To Be Prepared To Face It And Survive

    Jun 09, 23 12:04 PM

    SAT math
    The SAT Math section is known for being difficult. But it doesn’t have to be. Learn how to be prepared and complete the section with confidence here.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes


Math vocabulary quizzes