Expanding logarithms

The examples below will teach you about expanding logarithms using the properties of logarithms. First study the example immediately below carefully so that you can understand the process clearly. 

Expanding logarithms

After expanding logb[(x2y) / z] we get:

logb[(x2y) / z] = 2logb x + logb y - logb z

Notice that expanding logarithms is the inverse of simplifying logarithms. You are trying to express a single logarithm into many individual logarithms.

More examples showing how expanding logarithms work


Example #1

Expand log5 (3xy)

In this example, you just need to use the product property.

log5 (3xy) = log5 3 + log5 x + log5 y

Example #2

Expand log (a2b3)

In this example, you need to use a combination of the product property and the power property,

log10 (a2b3)    = log10 a2 + log10 b3

                       = 2log10 a + 2log10 

Example #3

Expand log2 (5x / 10y)

In this example you need to use a combination of the product property and the quotient property,

log2 (5x / 10y)  = log2 (5x) -  log2 (10y)    

                        = log2 (5) +  log2 (x)  -  [ log2 (10) +  log2 (y) ]

                        = log2 (5) +  log2 (x)  -   log2 (10) -  log2 (y) 

                        =  log2 (5) +  log2 (x)  -   log2 (5×2) -  log2 (y) 

                        =  log2 (5) +  log2 (x)  -   (log2 5 + log2 2) -  log2 (y) 

                        =  log2 (5) +  log2 (x)  -  log2 5 - log2 2 -  log2 (y)

                        =  log2 (x)  - log2 2 -  log2 (y)

Notice that  log2 (5) -  log2 5 = 0

Notice also that if you remember to simplify a quotient, there will be less work to do as demonstrated below for example #3

log2 (5x / 10y)  =  log2 (x / 2y)

                         =  log2 x - log2 2y

                         =  log2 x - ( log2 2 + log2 y )

                         = log2 x - log2 2 - log2 y 

Example #4

Expand log3 [ √ (36x3y) ]

Using a combination of the product property and the power property,

log3 [ √ (36x3y) ]   =  log3 [ (36x3y)1/2 ]

                              = 1/2 log3 (36x3y)

                              = 1/2 [ log3 (36) +  log3 (x3) + log3 (y) ]

                              = 1/2 [ log3 (36) +  3log3 (x) + log3 (y) ]

                              = 1/2 log3 (36) +  3/2 log3 (x) + 1/2 log3 (y) 

Recent Articles

  1. Discrete and Continuous Data

    Sep 17, 20 03:57 PM

    Learn clearly the difference between discrete and continuous data with good examples.

    Read More

New math lessons

Your email is safe with us. We will only use it to inform you about new math lessons.

                                 Follow me on Pinterest

Real Life Math Skills

Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.