# Factoring using the quadratic formula

Factoring using the quadratic formula is the goal of this lesson. It is closely related to solving equations using the quadratic formula

Step #1:

Solve the quadratic equation to get x1 and x2

Step #2

Uisng the answers found in step #1, the factorization form is a (x - x1)(x - x2)

Example #1:

Factor 4x2 + 9x + 2 = 0 using the quadratic formula.

a = 4, b = 9, and c = 2

x = (-b ± √(b2 - 4ac)) / 2a

x = (-9 ± √(92 - 4 × 4 × 2)) / 2 × 4

x = (-9 ± √(81 - 4 × 4 × 2)) / 8

x = (-9 ± √(81 - 4 × 8)) / 8

x = (-9 ± √(81 - 32)) / 8

x = (-9 ± √(49)) / 8

x = (-9 ± 7 ) / 8

x1 = (-9 + 7 ) / 8

x1 = (-2 ) / 8

x1 = -1/4

x2 = (-9 - 7 ) / 8

x2 = (-16 ) / 8

x2 = -2

The factorization form is a (x - x1)(x - x2)

The factorization form is 4 (x - -1/4)(x - -2)

The factorization form is 4 (x + 1/4)(x + 2)

Now, use distributive property to simplify the expression by getting rid of fractions

4 (x + 1/4)(x + 2) = (4 × x + 4 × 1/4) (x + 2) = (4x + 1)(x + 2)

Example #2:

Factor x2 + 2x - 15 = 0 using the quadratic formula

a = 1, b = 2, and c = -15

x = (-b ± √(b2 - 4ac)) / 2a

x = (- 2 ± √(22  - 4 × 1 × -15)) / 2 × 1

x = (-2 ± √(4 - 4 × 1 × -15)) / 2

x = (-2 ± √(4 - 4 × -15)) / 2

x = (-2 ± √(4 + 60)) / 2

x = (-2 ± √(64)) / 2

x = (-2 ± 8 ) / 2

x1 = (-2 + 8 ) / 2

x1 = ( 6 ) / 2

x1 = 3

x2 = (-2 - 8 ) / 2

x2 = (-10) / 2

x2 = -5

The factorization form is a (x - x1)(x - x2)

The factorization form is 1 (x - 3)(x - -5)

The factorization form is 1 (x - 3)(x + 5)

Now, use distributive property to simplify the expression

1 (x - 3)(x + 5) = (1 × x + 1 × -3) (x + 2) = (x - 3)(x + 5)

It is important to understand how to use the quadratic formula before fatoring using the quadratic formula.

## Recent Articles 1. ### How to Write an Inequality

Dec 12, 19 07:51 AM

Learn how to write an inequality quickly with this easy to follow math lesson.

New math lessons

Your email is safe with us. We will only use it to inform you about new math lessons.

Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius! Real Life Math Skills

Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.