Factoring using the quadratic formula


Factoring using the quadratic formula is the goal of this lesson. It is closely related to solving equations using the quadratic formula

2 easy steps to follow when factoring using the quadratic formula:

Step #1:

Solve the quadratic equation to get x1 and x2

Step #2

Uisng the answers found in step #1, the factorization form is a (x - x1)(x - x2)


Example #1:


Factor 4x2 + 9x + 2 = 0 using the quadratic formula.

a = 4, b = 9, and c = 2

x = (-b ± √(b2 - 4ac)) / 2a

x = (-9 ± √(92 - 4 × 4 × 2)) / 2 × 4

x = (-9 ± √(81 - 4 × 4 × 2)) / 8

x = (-9 ± √(81 - 4 × 8)) / 8

x = (-9 ± √(81 - 32)) / 8

x = (-9 ± √(49)) / 8

x = (-9 ± 7 ) / 8

x1 = (-9 + 7 ) / 8

x1 = (-2 ) / 8

x1 = -1/4

x2 = (-9 - 7 ) / 8

x2 = (-16 ) / 8

x2 = -2


The factorization form is a (x - x1)(x - x2)

The factorization form is 4 (x - -1/4)(x - -2)

The factorization form is 4 (x + 1/4)(x + 2)

Now, use distributive property to simplify the expression by getting rid of fractions

4 (x + 1/4)(x + 2) = (4 × x + 4 × 1/4) (x + 2) = (4x + 1)(x + 2)


Example #2:


Factor x2 + 2x - 15 = 0 using the quadratic formula

a = 1, b = 2, and c = -15

x = (-b ± √(b2 - 4ac)) / 2a

x = (- 2 ± √(22  - 4 × 1 × -15)) / 2 × 1

x = (-2 ± √(4 - 4 × 1 × -15)) / 2

x = (-2 ± √(4 - 4 × -15)) / 2

x = (-2 ± √(4 + 60)) / 2

x = (-2 ± √(64)) / 2

x = (-2 ± 8 ) / 2

x1 = (-2 + 8 ) / 2

x1 = ( 6 ) / 2

x1 = 3

x2 = (-2 - 8 ) / 2

x2 = (-10) / 2

x2 = -5

The factorization form is a (x - x1)(x - x2)

The factorization form is 1 (x - 3)(x - -5)

The factorization form is 1 (x - 3)(x + 5)

Now, use distributive property to simplify the expression

1 (x - 3)(x + 5) = (1 × x + 1 × -3) (x + 2) = (x - 3)(x + 5)

It is important to understand how to use the quadratic formula before fatoring using the quadratic formula.

Recent Articles

  1. Why Multiply before Adding when doing PEMDAS

    Oct 02, 19 04:34 PM

    Why multiply before adding? The common sense behind doing multiplication before addition

    Read More

New math lessons

Your email is safe with us. We will only use it to inform you about new math lessons.

                                 Follow me on Pinterest

K-12 math tests

Everything you need to prepare for an important exam!

K-12 tests, GED math test, basic math tests, geometry tests, algebra tests. 

Real Life Math Skills

Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.