Fit a quadratic function to 3 points

Let us fit a quadratic function to 3 points using the values in the table below.

x 1 2 3
y 0 -3 -10

Substitute the values of x and y into y = ax2 + bx + c

Using x  = 1 and y = 0, 0 = a(12) + b(1) + c

We get 0 = a + b + c

Using x  = 2 and y = -3, -3 = a(22) + b(2) + c 

We get -3 = 4a + 2b + c

Using x  = 3 and y = -10, -10 = a(32) + b(3) + c 

We get -10 = 9a + 3b + c

You end up with the following system of equations with three variables.

1. a + b + c = 0

2. 4a + 2b + c = -3

3. 9a + 3b + c = -10

You can solve this system of equations with three variables using either substitution or elimination.

Let us solve by elimination. Multiply 1. by -4.

1. -4(a + b + c) = -4(0)

1. -4a + -4b + -4c = 0

Add the left sides of 1. and 2. and add the right sides of 1. and 2.

1. -4a + -4b + -4c = 0

2. 4a + 2b + c = -3
__________________
4.       -2b + -3c = -3

Multiply 1. by -9.

1. -9(a + b + c) = -9(0)

1. -9a + -9b + -9c = 0

Add the left sides of 1. and 3. and add the right sides of 1. and 3.

1. -9a + -9b + -9c = 0

3. 9a + 3b + c = -10
___________________
5.       -6b + -8c = -10

Write the two new equations 4. and 5. as a system. 

4. -2b + -3c = -3

5. -6b + -8c = -10

Multiply 4. by -3.

4. -3(-2b + -3c) = -3(-3)

4. 6b + 9c = 9

Add the left sides of 4. and 5. and add the right sides of 4. and 5.

4.  6b + 9c = 9

5. -6b + -8c = -10
________________
               c   = -1

Use either equation 4. or 5. to find b

4. -2b + -3c = -3

-2b + -3(-1) = -3

-2b + 3 = -3

-2b = -6

b = 3

Use either equation 1. 2. or 3. to find a.

1. a + b + c = 0

a + 3 + -1 = 0

a + 2 = 0

a = -2

The solution is a = -2, b = 3 and c = -1

Substitute these values into the standard form.

y = -2x2 + 3x + -1

Recent Articles

  1. Box and Whiskers Plot

    Nov 18, 22 08:20 AM

    Easily learn to construct a box and whiskers plot for a set of data by using the median and the extreme values.

    Read More

  2. Binary Number System

    Nov 17, 22 10:53 AM

    This lesson will give you a deep and solid introduction to the binary number system.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes