How to do synthetic division

This lesson will explain how to do synthetic division to quickly divide a polynomial by another.

Synthetic division is also called the method of detached coefficients. This is because the first step in synthetic division is to remove the coefficients from the polynomial that is being divided.

A couple of  synthetic division examples are shown below.

Divide x2 + 11x + 30 by x + 5

Step 1

Reverse the sign of the constant term in the divisor. For example, the constant term in the divisor is 5. Change it to -5. Remove the coefficients from the dividend and rewrite the division as shown below in blue.

                              ________________________                                       
                x + 5     |  x ²  +  11x  +  30

                       -5  |    1       11     30   

Step 2

Bring down the  first coefficient or 1. The 1 will begin the quotient. 

                        -5      |    1       11      30   
                         ________________________
                                       1

Step 3

Multiply the first coefficient by the new divisor and add the answer to the next coefficient or 11. We get 6. write down 6 in the same position as 11 and -5.

                       -5      |    1       11      30   
                                                -5
                             ________________________
                                      
1         6

Step 4

Keep multiplying and adding until the remainder is found. For example, multiply 6 by -5. We get -30. Add -30 to 30 to get 0 and 0 is the remainder. In fact, the last number on the right that you find after you add is the remainder whether it is 0 or not. 

                        -5      |    1       11       30   
                                                 -5       -30
                             ______________________
                                       
1         6         0

The quotient is x + 6


How to do synthetic division when the degree of the polynomial is 3

Divide x3 + 5x2 -2x - 24 by x - 2

Step 1

                              ________________________                                       
                x - 2     |  x ³   +  5x²   -   2x   -  24

                       2   |    1        5         -2       -24   

Step 2

                      2  |    1        5        -2       -24   
                        __________________________
                                1

Step 3

                     2  |    1        5        -2       -24
                                          2  
                         __________________________     
                               1         7

                    2  |    1        5        -2       -24 
                                        2        14
                         __________________________      
                              1        7        12

                    2  |    1        5        -2       -24 
                                        2        14       24
                         __________________________      
                              1        7        12         0

The quotient is  x² + 7x + 12




Recent Articles

  1. How to Derive the Equation of an Ellipse Centered at the Origin

    Mar 13, 19 11:50 AM

    Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.

    Read More

New math lessons

Your email is safe with us. We will only use it to inform you about new math lessons.

            Follow me on Pinterest


Math quizzes

 Recommended

Scientific Notation Quiz

Graphing Slope Quiz

Adding and Subtracting Matrices Quiz  

Factoring Trinomials Quiz 

Solving Absolute Value Equations Quiz  

Order of Operations Quiz

Types of angles quiz


Tough algebra word problems

Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Recent Articles

  1. How to Derive the Equation of an Ellipse Centered at the Origin

    Mar 13, 19 11:50 AM

    Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.

    Read More

K-12 math tests


Everything you need to prepare for an important exam!

K-12 tests, GED math test, basic math tests, geometry tests, algebra tests. 

Real Life Math Skills

Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.