The table below will help you understand the properties of logarithms quickly.
Notice that log x = log_{10} x
If you do not see the base next to log, it always means that the base is 10. We have also rounded to the nearest thousandth.
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 |
log x | 0 | 0.301 | 0.477 | 0.602 | 0.699 | 0.778 | 0.845 | 0.903 | 0.954 | 1 | 1.176 | 1.301 |
Now, what do you notice about the following pairs of statements?
log 2 + log 3 and log (2 x 3)
log 4 + log 5 and log (4 x 5)
Here is what we notice about them.
log 2 + log 3 = 0.301 + 0.477 = 0.778 and 0.778 = log (6) = log (2 x 3)
Therefore, log 2 + log 3 = log (2 x 3)
By the same token,
log 4 + log 5 = 0.602 + 0.699 = 1.301 and 1.301 = log (20) = log (4 x 5)
Therefore, log 4 + log 5 = log (4 x 5)
In general, for any positive numbers, M, N and b, where b is not equal to 1, we have the following product property
log_{b} MN = log_{b} M + log_{b} N
Second, what do you notice about the following pairs of statements?
log (10 / 5) and log 10 - log 5
log (8 / 2) and log 8 - log 2
Here is what we notice about them.
log 8 - log 2 = 0.903 - 0.301 = 0.602 and 0.602 = log (4) = log (8 / 2)
Therefore, log 8 - log 2 = log (8 / 2)
By the same token,
log 10 - log 5 = 1 - 0.699 = 0.301 and 0.301 = log (2) = log (10 / 5)
Therefore, log 10 - log 5 = log (10 / 5)
In general, for any positive numbers, M, N and b, where b is not equal to 1, we have the following quotient property
log_{b} (M / N) = log_{b} M - log_{b} N
Finally, what do you notice about the following pairs of statements?
log (2^{3}) and 3 x log 2
log (3^{2}) and 2 x log 3
Here is what we notice about them.
log (2^{3}) = log 8 = 0.903
3 x log 2 = 3 x 0.301 = 0.903
Therefore, log (2^{3}) = 3 x log 2
log (3^{2}) = log 9 = 0.954
2 x log 3 = 3 x 0.477 = 0.954
log (3^{2}) = 2 x log 3
In general, for any positive numbers, M, N and b, where b is not equal to 1, we have the following quotient property
log_{b} (M^{x}) = x log_{b} M
Apr 02, 19 05:34 PM
Learn about equivalent, benchmark, multiplying, dividing, adding and subtracting fractions
Basic math formulas
Algebra word problems
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.
Recommended
Scientific Notation Quiz
Graphing Slope Quiz
Adding and Subtracting Matrices Quiz
Factoring Trinomials Quiz
Solving Absolute Value Equations Quiz
Order of Operations Quiz
Types of angles quiz
Apr 02, 19 05:34 PM
Learn about equivalent, benchmark, multiplying, dividing, adding and subtracting fractions