Properties of matrix addition

The properties of matrix addition are closure property, commutative property of addition, associative property of addition, additive identity property, and additive inverse property. We summarize these properties in the figure below

Properties of matrix addition

The properties of matrix addition along with well chosen examples to illustrate the concept

If A, B, and C are m x n matrices, then

Closure property

A + B is an m x n matrix

Example

Let A = [1 -2 5 3] and let B = [2 0 -4 6]

A is a 1 x 4 matrix and B is also a 1 x 4 matrix.

A + B = [1+2 -2+0 5+-4 3+6]

A + B = [3 -2 1 9]

A + B is also a 1 x 4 matrix

Commutative property of addition

A + B = B + A

Example #1

$$ A = \begin{bmatrix} -2 & 0 & 4\\ 6 & 1 & 3\\ -8 & 1 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 2 & 0\\ 7 & 9 & 10\\ 0 & 4 & 5 \end{bmatrix} $$

A is a 3 x 3 matrix and B is also a 3 x 3 matrix.

$$ A + B = \begin{bmatrix} -2 + 1 & 0 + 2 & 4 + 0\\ 6 + 7 & 1 + 9 & 3 + 10\\ -8 + 0 & 1 + 4 & 0 + 5 \end{bmatrix} $$
$$ A + B = \begin{bmatrix} -1 & 2 & 4\\ 13 & 10 & 13\\ -8 & 5 & 5 \end{bmatrix} $$
$$ B + A = \begin{bmatrix} 1 + -2 & 2 + 0 & 0 + 4\\ 7 + 6 & 9 + 1 & 10 + 3\\ 0 + -8 & 4 + 1 & 5 + 0 \end{bmatrix} $$
$$ B + A = \begin{bmatrix} -1 & 2 & 4\\ 13 & 10 & 13\\ -8 & 5 & 5 \end{bmatrix} $$

Example #2

Let A = [4   1   -4] and let B = [-4   2   5] 

A is a 1 x 3 matrix and B is also a 1 x 3 matrix.

A + B = [4+-4   1+2   -4+5]

A + B = [0   3   1]

B + A = [-4+4   2+1    5+-4]

B + A = [0   3   1]

Associative property of addition

(A + B) + C  = A + (B + C)

Example

Let A = [2   -1] , B = [0   1], and C = [3   -5] 

A is a 1 x 2 matrix, B is a 1 x 2 matrix, and C is also 1 x 2 matrix.

(A + B) + C = [2+0   -1+1] + [3   -5] 

(A + B) + C = [2   0] + [3   -5] 

(A + B) + C = [2+3   0+-5] 

(A + B) + C = [5   -5] 

A + (B + C) = [2   -1] + [0+3   1+-5] 

A + (B + C) = [2   -1] + [3   -4] 

A + (B + C) = [2+3   -1+-4] 

A + (B + C) = [5   -5]

Additive identity property

There exists a unique m x n matrix O such that A + O = O + A = A

Example #1

Let A = [8 9] and O = [0 0]

A + O = [8 9] + [0 0] = [8+0 9+0] = [8 9] = A

O + A = [0 0] + [8 9] = [0+8 0+9] = [8 9] = A

Example #2

$$ A = \begin{bmatrix} 9 & -5 & 8\\ 1 & 0 & 1\\ 3 & 2 & -6 \end{bmatrix} O = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} $$
$$ A + O = \begin{bmatrix} 9 + 0 & -5 + 0 & 8 + 0\\ 1 + 0 & 0 + 0 & 1 + 0\\ 3 + 0 & 2 + 0 & -6 + 0 \end{bmatrix} $$
$$ A + O = \begin{bmatrix} 9 & -5 & 8\\ 1 & 0 & 1\\ 3 & 2 & -6 \end{bmatrix} = A $$
$$ O + A = \begin{bmatrix} 0 + 9 & 0 + -5 & 0 + 8\\ 0 + 1 & 0 + 0 & 0 + 1\\ 0 + 3 & 0 + 2 & 0 + -6 \end{bmatrix} $$
$$ O + A = \begin{bmatrix} 9 & -5 & 8\\ 1 & 0 & 1\\ 3 & 2 & -6 \end{bmatrix} = A $$

Additive inverse property

For each A, there exists a unique opposite, -A such that A + (-A) = O 

Example

Let A = [4   -6], -A = [-4   +6]  and O = [0   0]

A + (-A) = [4   -6] + [-4   +6] = [4+-4   -6+6] = [0   0] =  O

Recent Articles

  1. Rational Numbers - Definition and Examples

    Mar 15, 23 07:45 AM

    Rational numbers
    To learn about rational numbers, write their decimal expansion, and recognize rational numbers that are repeating decimals and terminating decimals.

    Read More

  2. Area of a Trapezoid - Definition, Formula, and Examples

    Mar 13, 23 07:52 AM

    Area of a trapezoid1
    Learn how to get the area of a trapezoid using a rectangle and a triangle, the formula, and also when the height of the trapezoid is missing.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes