Properties of matrix addition

The properties of matrix addition are closure property, commutative property of addition, associative property of addition, additive identity property, and additive inverse property.

If A, B, and C are m x n matrices, then

Closure property

A + B is an m x n matrix

Example

Let A = [1   -2   5   3] and let B = [2   0   -4   6]     

A is a 1 x 4 matrix and B is also a 1 x 4 matrix.

A + B = [1+2   -2+0   5+-4   3+6]

A + B = [3  -2   1   9]

A + B is also a 1 x 4 matrix

Commutative property of addition

A + B  = B + A

Example

Let A = [4   1   -4] and let B = [-4   2   5] 

A is a 1 x 3 matrix and B is also a 1 x 3 matrix.

A + B = [4+-4   1+2   -4+5]

A + B = [0   3   1]

B + A = [-4+4   2+1    5+-4]

B + A = [0   3   1]

Associative property of addition

(A + B) + C  = A + (B + C)

Example

Let A = [2   -1] , B = [0   1], and C = [3   -5] 

A is a 1 x 2 matrix, B is a 1 x 2 matrix, and C is also 1 x 2 matrix.

(A + B) + C = [2+0   -1+1] + [3   -5] 

(A + B) + C = [2   0] + [3   -5] 

(A + B) + C = [2+3   0+-5] 

(A + B) + C = [5   -5] 

A + (B + C) = [2   -1] + [0+3   1+-5] 

A + (B + C) = [2   -1] + [3   -4] 

A + (B + C) = [2+3   -1+-4] 

A + (B + C) = [5   -5]


Additive identity property

There exists a unique m x n matrix O such that A + O = O + A = A

Example

Let A = [8   9]  and O = [0   0]

A + O = [8   9] + [0   0] = [8+0   9+0] = [8   9] = A

O + A = [0   0] + [8   9] = [0+8   0+9] = [8   9] = A

Additive inverse property

For each A, there exists a unique opposite, -A such that A + (-A) = O = O 

Example

Let A = [4   -6], -A = [-4   +6]  and O = [0   0]

A + (-A) = [4   -6] + [-4   +6] = [4+-4   -6+6] = [0   0] =  O

Recent Articles

  1. How to Construct Parallel Lines

    Jan 12, 22 07:48 AM

    This lesson will show you how to construct parallel lines with easy to follow steps

    Read More

Enjoy this page? Please pay it forward. Here's how...

Would you prefer to share this page with others by linking to it?

  1. Click on the HTML link code below.
  2. Copy and paste it, adding a note of your own, into your blog, a Web page, forums, a blog comment, your Facebook account, or anywhere that someone would find this page valuable.