This lesson gives a coordinate proof of the triangle midsegment theorem. What is the triangle midsegment theorem?
If a segment joins the midpoints of the sides of a triangle, then the segment is parallel to the third side and the segment is half the length of the third side.
Proof of the theorem.
Consider the following triangle on the coordinate system.
Given: S is the midpoint of OQ R is the midpoint of PQ Prove: SR  OP
SR =
OP
2

Given: S is the midpoint of OQ R is the midpoint of PQ Prove: SR  OP
SR =
OP
2


S: (
b + 0
2
,

c + 0
2
)

= (
b
2
,

c
2
)

S: (
b + 0
2
,

c + 0
2
)

= (
b
2
,

c
2
)

R: (
a + b
2
,

c + 0
2
)

= (
a + b
2
,

c
2
)

R: (
a + b
2
,

c + 0
2
)

= (
a + b
2
,

c
2
)

To prove that SR is half OP, we can use the distance formula to find SR and OP.
$$ OP = \ {\sqrt{(a  0)^2 + (0  0)^2 } } $$ 
$$ OP = \ {\sqrt{(a)^2 + (0)^2 } } $$ 
$$ OP = \ {\sqrt{(a)^2 } } = a $$ 
$$ SR = \ {\sqrt{(\frac{a+b} {2}  \frac{b} {2} )^2 + (\frac{c} {2} \frac{c} {2} )^2 } } $$ 
$$ SR = \ {\sqrt{(\frac{a} {2}+ \frac{b} {2}  \frac{b} {2} )^2 + (0)^2 } } $$ 
$$ SR = \ {\sqrt{(\frac{a} {2} + 0)^2 + (0)^2 } } $$ 
$$ SR = \ {\sqrt{(\frac{a} {2})^2 } = \frac{a} {2} } $$ 
Apr 02, 19 05:34 PM
Learn about equivalent, benchmark, multiplying, dividing, adding and subtracting fractions
Basic math formulas
Algebra word problems
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.
Recommended
Scientific Notation Quiz
Graphing Slope Quiz
Adding and Subtracting Matrices Quiz
Factoring Trinomials Quiz
Solving Absolute Value Equations Quiz
Order of Operations Quiz
Types of angles quiz
Apr 02, 19 05:34 PM
Learn about equivalent, benchmark, multiplying, dividing, adding and subtracting fractions