Number forms of decimals are the different ways of writing decimals. See below the six different ways of writing the same decimal number.
The following table shows the number forms for the decimal number 36.2418. The figure above do not have a short word form for 48.25. However, we do have a short word form for the number 36.2418
Number Forms | Example |
Standard form | 36.2418 |
Word form or written form | thirty-six and two thousand four hundred eighteen ten-thousandths |
Short word form | 36 and 2418 ten-thousandths |
Expanded form | (3 × 10) + (6 × 1) + (2 × 0.1) + (4 × 0.01) + (1 × 0.001) + (8 × 0.0001) |
Exponential form | (3 × 10^{1}) + (6 × 10^{0}) + (2 × 10^{-1}) + (4 × 10^{-2}) + (1 × 10^{-3}) + (8 ×10^{-4}) |
Scientific form | 3.62418 × 10^{1} |
The short word form is used for numbers greater than one thousand.
Example #1
Show the six different ways of writing 74.5961
Solution
Standard form: 74.5961
Word form: Seventy-four and five thousand nine hundred sixty-one ten-thousandths
Short word form: 74 and 5961 ten-thousandths
Expanded form: (7 × 10) + (4 × 1) + (5 × 0.1) + (9 × 0.01) + (6 × 0.001) + (1 × 0.0001)
Exponential form: (7 × 10^{1}) + (4 × 10^{0}) + (5 × 10^{-1}) + (9 × 10^{-2}) + (6 × 10^{-3}) + (1 × 10^{-4})
Scientific form: 7.45961× 10^{1}
Example #2
Show the six different ways of writing 681.96743
Solution
Standard form: 681.96743
Word form: Six hundred eighty-one and ninety-six thousand seven hundred forty-three hundred-thousandths
Short word form: 681 and 96743 hundred-thousandths
Expanded form: (6 × 100) + (8 × 10) + (1 × 1) + (9 × 0.1) + (6 × 0.01) + (7 × 0.001) + (4 × 0.0001) + (3 × 0.00001)
Exponential form: (6 × 10^{2}) + (8 × 10^{1}) + (1 × 10^{0}) + (9 × 10^{-1}) + (6 × 10^{-2}) + (7 × 10^{-3}) + (4 × 10^{-4}) + (3 × 0.10^{-5})
Scientific form: 6.8196743 × 10^{2}
Jun 06, 23 07:32 AM
May 01, 23 07:00 AM