Heron's formula
You can use Heron's formula to calculate the area of any triangle when you know the lengths of the three sides.
Heron's formula
Let us call the lengths of the three sides a, b, and c.
Let s be called the semiperimeter.
The name makes sense because it is the perimeter divided by two.
Then, the formula to use to find the perimeter is the following.
Notice that you must first compute s or the semiperimeter
A few examples showing how to use Heron's formula to calculate the area of triangles
Example #1:
Use Heron's formula to find the area of a triangle when a = 3 cm, b = 5 cm, and c = 4 cm
s = (3 + 5 + 4)/2 = 12/2 = 6
s − a = 6 − 3 = 3
s − b = 6 − 5 = 1
s − c = 6 − 4 = 2
s × (s − a) × (s − b) × (s − c) = 6 × 3 × 1 × 2 = 36
√(36) = 6
The area of this triangle is 6 cm
^{2}
Example #2:
Use Heron's formula to find the area of a triangle when a = 4 cm, b = 6 cm, and c = 8 cm
s = (4 + 6 + 8)/2 = 18/2 = 9
s − a = 9 − 4 = 5
s − b = 9 − 6 = 3
s − c = 9 − 8 = 1
s × (s − a) × (s − b) × (s − c) = 9 × 5 × 3 × 1 = 135
√(135) = 11.61
The area of this triangle is 11.61 cm
^{2}
Example #3:
Use Heron's formula to find the area of a triangle when a = 3/2 cm, b = 5/2 cm, and c = 2 cm
s = (3/2 + 5/2 + 2)/2 = (3/2 + 5/2 + 4/2)/2 = (12/2)/2 = 6/2 = 3
s − a = 3 − 3/2 = (6/2 − 3/2) = (6 − 3)/2 = 3/2
s − b = 3 − 5/2 = (6/2 − 5/2) = (6 − 5)/2 = 1/2
s − c = 3 − 2 = 1
s × (s − a) × (s − b) × (s − c) = 3 × 3/2 × 1/2 × 1 = 9/4
√(9/4) = 3/2
The area of this triangle is 1.5 cm
^{2}

Mar 29, 23 10:19 AM
Learn to calculate the conditional probability using a contingency table. This contingency table can help you understand quickly and painlessly.
Read More

Mar 15, 23 07:45 AM
To learn about rational numbers, write their decimal expansion, and recognize rational numbers that are repeating decimals and terminating decimals.
Read More