Centroid of a triangle

The centroid of a triangle is the point where the three medians of a triangle meet or intersect. An illustration of the centroid is shown below.
centroid of a triangle

In the above graph, we call each line (in blue) a median of the triangle.

The median is the line that starts from a vertex and goes to the midpoint of the opposite side

After you construct all three medians, the point where they intersect ( shown in red ) is the centroid

Now, If you put a triangle on the coordinate system, you can easily get the centroid by doing some simple calculation.

centroid of a triangle


Call the centroid C, the formula to get the centroid is:

[( x1 + x2 + x3)/3, (y1 + y2 + y3)/3]

Example:

Find the centroid of the following triangle with vertices (1,2), (3,4), and (5,0)

centroid of a triangle


C = [ (1 + 3 + 5) / 3 , (2 + 4 + 0) / 3 ] = (9/3 , 6/3) = (3,2)

Recent Articles

  1. Quadratic Formula: Easy To Follow Steps

    Jan 26, 23 11:44 AM

    Quadratic formula
    Learn about the quadratic formula, the discriminant, important definitions related to the formula, and applications.

    Read More

  2. Area Formula - List of Important Formulas

    Jan 25, 23 05:54 AM

    Frequently used area formulas
    What is the area formula for a two-dimensional figure? Here is a list of the ones that you must know!

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes