Midpoint of a line segment

To find the midpoint of a line segment on the coordinate system, simply take the average of the x-coordinates and the average of the y-coordinates.

Let (x1 , y1) and (x2 , y2) represent the endpoints of a line segment.

Therefore, the formula to get the midpoint is: [(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2]

A couple of examples showing how to find the midpoint of a line segment

Example #1:

Graph (2, 4) and (4, 8) and find the midpoint

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = [(2 + 4) ÷ 2, (4 + 8)÷ 2]

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (6 ÷ 2, 12 ÷ 2)

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (3, 6)

The graph is shown below.

Midpoint


Example #2:

Graph (-4, 2) and (0, 6) and find the midpoint.

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = [(-4 + 0) ÷ 2, (2 + 6)÷ 2]

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (-4 ÷ 2, 8 ÷ 2)

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (-2, 4)

The graph is shown below:

Midpoint


Example #3:

Using (5, -5) and (-1, 1), find the midpoint.

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = [(5 + -1) ÷ 2, (-5 + 1)÷ 2]

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (4 ÷ 2, -4 ÷ 2)

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (2, -2)

Example #4:

Using (12, 0) and (-12, 2), find the midpoint.

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = [(12 + -12) ÷ 2, (0 + 2)÷ 2]

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (0 ÷ 2, 2 ÷ 2)

[(x1 + x2) ÷ 2 , (y1 + y2) ÷ 2] = (0, 1)

Recent Articles

  1. Find the Multiplicity of a Zero

    Oct 20, 21 04:45 AM

    Learn how to find the multiplicity of a zero with this easy to follow lesson

    Read More

Enjoy this page? Please pay it forward. Here's how...

Would you prefer to share this page with others by linking to it?

  1. Click on the HTML link code below.
  2. Copy and paste it, adding a note of your own, into your blog, a Web page, forums, a blog comment, your Facebook account, or anywhere that someone would find this page valuable.