Difference of sets

This lesson will explain how to find the difference of sets. We will start with a definition.

Definition:

Given set A and set B the set difference of set B from set A is the set of all element in A, but not in B.

We can write A − B

Example #1.
Difference of sets

Take a close look at the figure above. Elements in A only are b, d, e, and g.

Therefore, A − B = { b, d, e, g}

Notice that although elements a, f, c are in A, we did not include them in A − B because we must not take anything in set B.

Sometimes, instead of looking at the Venn Diagrams, it may be easier to write down the elements of both sets.

Then, we show in bold the elements that are in A, but not in B.

A = {b, d, e, g, a, f, c}

B = { k, h, u, a, f, c}


Example #2.

Let A = {1 orange, 1 pineapple, 1 banana, 1 apple}

Let B = {1 orange, 1 apricot, 1 pineapple, 1 banana, 1 mango, 1 apple, 1 kiwifruit }

Find B − A

Notice that this time you are looking for anything you see in B only

Elements that are in B only are shown in bold below.

B − A = {1 apricot, 1 mango, 1 kiwifruit}

Example #3.

Find A − B

B = { 1, 2, 4, 6}

A = {1, 2, 4, 6, 7, 8, 9 }

What I see in A that are not in B are 7, 8, and 9

A − B = { 7, 8, 9}

Example #4.

Find B − A

A = { x / x is a number bigger than 6 and smaller than 10}

B = { x / x is a positive number smaller than 15}

A = {7, 8, 9} and B = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

Everything you see in bold above are in B only.

B − A = {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14}

The graph below shows the shaded region for A − B and B − A
Difference of sets
This ends the lesson about the difference of sets.

Difference of sets quiz to see how well you understand this lesson.

Recent Articles

  1. Fundamental Counting Principle

    Jun 06, 23 07:32 AM

    Multiplication principle and addition principle
    The fundamental counting principle is introduced in this lesson. Learn how to count with the multiplication principle and the addition principle.

    Read More

  2. 45-45-90 Triangle

    May 01, 23 07:00 AM

    45-45-90 triangle
    What is a 45-45-90 triangle? Definition, proof, area, and easy to follow real-world examples.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes