Evaluate a polynomial by synthetic division

Learn how to evaluate a polynomial by synthetic division with a couple of well-chosen examples.

Example #1:

Find P(3) using synthetic division for P(x) = x4 - 3x3 + 5x2 + 6x + 2

By the remainder theorem, P(3) is equal to the remainder when P(x) is divided by x - 3

Step 1

Start by writing down the divisor and the coefficients of the polynomial in standard form.

       |  1    -3    5    6    2

Step 2

Bring down the first coefficient and that is 1. 

       3 |  1    -3    5    6    2
            
          ________________
             1

Step 3

Multiply the first coefficient by the divisor. Write the result under the next coefficient and add. 

       3 |  1    -3    5    6    2
                    3
          ________________
             1     0

Step 4

Multiply the 0 by the divisor. Write the result under the next coefficient and add. 

       3 |  1    -3    5    6    2
                    3    0
          ________________
             1     0    5

Step 5

Repeat the steps of multiplying and adding until the remainder is found. 

       3 |  1    -3    5     6      2
                    3    0    15    63
          ___________________
             1     0    5    21    65

Since the remainder is 65, P(3) = 65

Example #2:

Find P(-2) using synthetic division for P(x) = 2x4 + 3x3 - 5x2 - 20

By the remainder theorem, P(-2) is equal to the remainder when P(x) is divided by x - (-2)

Step 1

Start by writing down the divisor and the coefficients of the polynomial in standard form.

       -2 |  2    3    -5    0    -20

Step 2

Bring down the first coefficient and that is 2. 

       -2 |  2    3    -5    0    -20
                   
          __________________
              2    

Step 3

Multiply the first coefficient by the divisor. Write the result under the next coefficient and add. 

        -2 |  2     3    -5    0    -20
                     -4
          ___________________
               2    -1

Step 4

Multiply the -1 by the divisor. Write the result under the next coefficient and add. 

        -2 |  2     3    -5    0    -20
                     -4
          ___________________
               2    -1

Step 5

Repeat the steps of multiplying and adding until the remainder is found. 

       -2 |  2     3    -5    0     -20
                    -4     2    6     -12
         ___________________
              2    -1    -3    6     -32

Since the remainder is -32, P(-2) = -32

Recent Articles

  1. 45-45-90 Triangle

    May 01, 23 07:00 AM

    45-45-90 triangle
    What is a 45-45-90 triangle? Definition, proof, area, and easy to follow real-world examples.

    Read More

  2. Theoretical Probability - Definition, Explanation, and Examples

    Apr 24, 23 07:02 AM

    Theoretical probability versus experimental probability
    Learn how to compute the likelihood or probability of an event using the theoretical probability formula.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes