Evaluate a polynomial by synthetic division

Learn how to evaluate a polynomial by synthetic division with a couple of well-chosen examples.

Example #1:

Find P(3) using synthetic division for P(x) = x4 - 3x3 + 5x2 + 6x + 2

By the remainder theorem, P(3) is equal to the remainder when P(x) is divided by x - 3

Step 1

Start by writing down the divisor and the coefficients of the polynomial in standard form.

       |  1    -3    5    6    2

Step 2

Bring down the first coefficient and that is 1. 

       3 |  1    -3    5    6    2
            
          ________________
             1

Step 3

Multiply the first coefficient by the divisor. Write the result under the next coefficient and add. 

       3 |  1    -3    5    6    2
                    3
          ________________
             1     0

Step 4

Multiply the 0 by the divisor. Write the result under the next coefficient and add. 

       3 |  1    -3    5    6    2
                    3    0
          ________________
             1     0    5

Step 5

Repeat the steps of multiplying and adding until the remainder is found. 

       3 |  1    -3    5     6      2
                    3    0    15    63
          ___________________
             1     0    5    21    65

Since the remainder is 65, P(3) = 65

Example #2:

Find P(-2) using synthetic division for P(x) = 2x4 + 3x3 - 5x2 - 20

By the remainder theorem, P(-2) is equal to the remainder when P(x) is divided by x - (-2)

Step 1

Start by writing down the divisor and the coefficients of the polynomial in standard form.

       -2 |  2    3    -5    0    -20

Step 2

Bring down the first coefficient and that is 2. 

       -2 |  2    3    -5    0    -20
                   
          __________________
              2    

Step 3

Multiply the first coefficient by the divisor. Write the result under the next coefficient and add. 

        -2 |  2     3    -5    0    -20
                     -4
          ___________________
               2    -1

Step 4

Multiply the -1 by the divisor. Write the result under the next coefficient and add. 

        -2 |  2     3    -5    0    -20
                     -4
          ___________________
               2    -1

Step 5

Repeat the steps of multiplying and adding until the remainder is found. 

       -2 |  2     3    -5    0     -20
                    -4     2    6     -12
         ___________________
              2    -1    -3    6     -32

Since the remainder is -32, P(-2) = -32

Recent Articles

  1. Quadratic Formula: Easy To Follow Steps

    Jan 26, 23 11:44 AM

    Quadratic formula
    Learn about the quadratic formula, the discriminant, important definitions related to the formula, and applications.

    Read More

  2. Area Formula - List of Important Formulas

    Jan 25, 23 05:54 AM

    Frequently used area formulas
    What is the area formula for a two-dimensional figure? Here is a list of the ones that you must know!

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes