Evaluate a polynomial by synthetic division

Learn how to evaluate a polynomial by synthetic division with a couple of well-chosen examples.

Example #1:

Find P(3) using synthetic division for P(x) = x4 - 3x3 + 5x2 + 6x + 2

By the remainder theorem, P(3) is equal to the remainder when P(x) is divided by x - 3

Step 1

Start by writing down the divisor and the coefficients of the polynomial in standard form.

       |  1    -3    5    6    2

Step 2

Bring down the first coefficient and that is 1. 

       3 |  1    -3    5    6    2
            
          ________________
             1

Step 3

Multiply the first coefficient by the divisor. Write the result under the next coefficient and add. 

       3 |  1    -3    5    6    2
                    3
          ________________
             1     0

Step 4

Multiply the 0 by the divisor. Write the result under the next coefficient and add. 

       3 |  1    -3    5    6    2
                    3    0
          ________________
             1     0    5

Step 5

Repeat the steps of multiplying and adding until the remainder is found. 

       3 |  1    -3    5     6      2
                    3    0    15    63
          ___________________
             1     0    5    21    65

Since the remainder is 65, P(3) = 65

Example #2:

Find P(-2) using synthetic division for P(x) = 2x4 + 3x3 - 5x2 - 20

By the remainder theorem, P(-2) is equal to the remainder when P(x) is divided by x - (-2)

Step 1

Start by writing down the divisor and the coefficients of the polynomial in standard form.

       -2 |  2    3    -5    0    -20

Step 2

Bring down the first coefficient and that is 2. 

       -2 |  2    3    -5    0    -20
                   
          __________________
              2    

Step 3

Multiply the first coefficient by the divisor. Write the result under the next coefficient and add. 

        -2 |  2     3    -5    0    -20
                     -4
          ___________________
               2    -1

Step 4

Multiply the -1 by the divisor. Write the result under the next coefficient and add. 

        -2 |  2     3    -5    0    -20
                     -4
          ___________________
               2    -1

Step 5

Repeat the steps of multiplying and adding until the remainder is found. 

       -2 |  2     3    -5    0     -20
                    -4     2    6     -12
         ___________________
              2    -1    -3    6     -32

Since the remainder is -32, P(-2) = -32

Recent Articles

  1. Irrational Root Theorem - Definition and Examples

    Dec 01, 21 04:17 AM

    What is the irrational root theorem? Definition, explanation, and easy to follow examples.

    Read More

Enjoy this page? Please pay it forward. Here's how...

Would you prefer to share this page with others by linking to it?

  1. Click on the HTML link code below.
  2. Copy and paste it, adding a note of your own, into your blog, a Web page, forums, a blog comment, your Facebook account, or anywhere that someone would find this page valuable.