The remainder theorem

Remainder theorem: If a polynomial P(x) of degree n ≥ 1 is divided by x - b, where b is a constant, then the remainder is P(b).

A couple of examples illustrating the remainder theorem 

Example #1

In the lesson about polynomial long division, we ended with the following result:

(x2 - 5x + 1) ÷ (x + 3) = x + -8 with a remainder of 25

You can also write (x2 - 5x + 1) = (x + 3)(x + -8) + 25

Observation

(x + 3)(x + -8) + 25 = x2 + -8x + 3x + -24 + 25

(x + 3)(x + -8) + 25 = x2 + -5x + 1

Using (x2 - 5x + 1) = (x + 3)(x + -8) + 25

Dividend = (x2 - 5x + 1)

divisor = (x + 3) 

quotient = (x + -8) 

Remainder = 25  

Dividend = divisor x quotient + remainder

When we divide (x2 - 5x + 1) by (x + 3), we get a remainder of 25.

Using P(x) = (x2 - 5x + 1), calculate P(-3).

P(-3) = (-3)2 - 5(-3) + 1

P(-3) = 9 - -15 + 1

P(-3) = 9 + 15 + 1

P(-3) = 25

As you can see, if a = -3, P(-3) is equal to the remainder (25) when (x2 - 5x + 1) is divided by (x + 3)

Example #2

In the lesson about polynomial long division, we ended also with the following result:

(x2 + 3x - 10) ÷ (x - 2) = x + 5

(x2 + 3x - 10) = (x - 2)(x + 5) 

(x2 + 3x - 10) = (x - 2)(x + 5) + 0

P(2) = 22 + 3(2) - 10

P(2) = 4 + 6 - 10

P(2) = 10 - 10

P(2) = 0

Again, you can see that if a = 3, P(2) is equal to the remainder (0) when (x2 - 5x + 1) is divided by (x - 2)

Recent Articles

  1. Irrational Root Theorem - Definition and Examples

    Dec 01, 21 04:17 AM

    What is the irrational root theorem? Definition, explanation, and easy to follow examples.

    Read More

Enjoy this page? Please pay it forward. Here's how...

Would you prefer to share this page with others by linking to it?

  1. Click on the HTML link code below.
  2. Copy and paste it, adding a note of your own, into your blog, a Web page, forums, a blog comment, your Facebook account, or anywhere that someone would find this page valuable.