Factor a sum or difference of cubes

Learn how to factor a sum or difference of cubes using the special factoring patterns below.

Sum of cubes

a3 + b3 = ( a + b ) × ( a2 - ab + b2 )

Difference of cubes

a3 - b3 = ( a - b ) × ( a2 + ab + b2 )

Example #1: 

Factor the sum of cubes x3 + 27

First rewrite x3 + 27 so it will have the same format as a3 + b3

x3 + 27 = x3 + 33

Let a = x and let b = 3

a3 + b3 = ( a + b ) × ( a2 - ab + b2 )

x3 + 33 = (x + 3) × (x2 - x×3 + 32)

x3 + 33 = (x + 3) × (x2 - 3x + 9)

Check

(x + 3) × (x2 - 3x + 9) = x(x2 - 3x + 9) + 3(x2 - 3x + 9)

(x + 3) × (x2 - 3x + 9) = x3 - 3x2 + 9x + 3x2 - 9x + 27

(x + 3) × (x2 - 3x + 9) = x3 - 3x2 + 3x2 +9x - 9x + 27

Everything in red is equal to 0

(x + 3) × (x2 - 3x + 9) = x3 + 27

Example #2: 

Factor the difference of cubes x3 - 64

First rewrite x3 - 64 so it will have the same format as a3 - b3

x3 - 64 = x3 - 43

Let a = x and let b = 4

a3 - b3 = ( a - b ) × ( a2 + ab + b2 )

x3 - 43= (x - 4) × (x2 + x×4 + 42)

x3 - 43= (x - 4) × (x2 + 4x + 16)

Check

(x - 4) × (x2 + 4x + 16) = x(x2 + 4x + 16) - 4(x2 + 4x + 16)

(x - 4) × (x2 + 4x + 16) = x3 + 4x2 + 16x - 4x2 - 16x - 64

(x - 4) × (x2 + 4x + 16) = x3 + 4x2 + - 4x2 + 16x - 16x - 64

Everything in red is equal to 0

(x - 4) × (x2 + 4x + 16) = x3 - 64

Tricky examples showing how to factor a sum or difference of cubes


Example #3: 

Factor the difference of cubes 125x3 - 216

First rewrite 125x3 - 64 so it will have the same format as a3 - b3

125x3 - 216 = (5x)3 - (6)3

Let a = 5x and let b = 6

a3 - b3 = ( a - b ) × ( a2 + ab + b2 )

(5x)3 - (6)3 = (5x - 6)[(5x)2 + 5x × 6 + 62]

(5x)3 - (6)3 = (5x - 6)(25x2 + 30x + 36)

Example #4: 

Factor the sum of cubes x6 + 8x15

First rewrite x6 + 8x15 so it will have the same format as a3 + b3

x6 + 8x15 = (x2)3 + (2x5)3

Let a = xand let b = 2x5

a3 + b3 = ( a + b ) × ( a2 - ab + b2 )

(x2)3 + (2x5)= (x2 + 2x5) × [(x2)2- x2×2x5 + (2x5)2]

(x2)3 + (2x5)= (x2 + 2x5) × (x4 - 2x7 + 4x10)

(x2)3 + (2x5)= x2(1 + 2x3) × x4(1 - 2x3 + 4x6)

(x2)3 + (2x5)= x6(1 + 2x3)×(1 - 2x3 + 4x6)

Recent Articles

  1. Quadratic Formula: Easy To Follow Steps

    Jan 26, 23 11:44 AM

    Quadratic formula
    Learn about the quadratic formula, the discriminant, important definitions related to the formula, and applications.

    Read More

  2. Area Formula - List of Important Formulas

    Jan 25, 23 05:54 AM

    Frequently used area formulas
    What is the area formula for a two-dimensional figure? Here is a list of the ones that you must know!

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes