Using the unit circle to find cosine and sine of 30 degrees and 60 degrees

Since we are using the unit circle, we need to put the 30-60-90 triangle inside the unit circle.

Unit circle and the 30-60-90 degrees triangle


The radius of the circle is also the hypotenuse of the right triangle and it is equal to 1.

We have already seen in the previous lesson that the leg opposite the 30 degrees angle is half the hypotenuse. 

Again, we will find the length of vertical black line of the triangle using the pythagorean theorem.

Since 1/2 = 0.5, we will replace 1/2 with 0.5 in the formula to simplify the computation.

12 = 0.52 + y2

1 = 0.25 + y2

1 - 0.25 = 0.25 - 0.25 + y2

0.75 = y2

Since 0.75 = 3/4,   y = √ (3/4)

y = √(3) / √(4)

y = √(3) / 2

x = 1/2, y = √3 / 2 and t could be 30 or 60 degrees.

cos(30 degrees) = y / 1 = y = √3 / 2

cos(60 degrees) = x / 1 = x = 1 / 2

sin(60 degrees) = y / 1 = y = √3 / 2

sin(30 degrees) = x / 1 = x = 1 / 2

Recent Articles

  1. Fundamental Counting Principle

    Jun 06, 23 07:32 AM

    Multiplication principle and addition principle
    The fundamental counting principle is introduced in this lesson. Learn how to count with the multiplication principle and the addition principle.

    Read More

  2. 45-45-90 Triangle

    May 01, 23 07:00 AM

    45-45-90 triangle
    What is a 45-45-90 triangle? Definition, proof, area, and easy to follow real-world examples.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes