Before, we can find the sine and cosine, we need to build our 30-60-90 degrees triangle. Start with an equilateral triangle with a side length of 4 like the one you see below.
Then, from one vertex, draw the line that is perpendicular to the side opposite the vertex. Notice that the black line bisect the side. That is why the leg opposite the 30 degrees angle measures 2.
All we need to do is to find the length of the leg in black and we will be ready to find sin(30 degrees), sin(60 degrees), cos(30 degrees), and cos(60 degrees).
Call the length of the black line y and use the pythagorean theorem to find y.
4^{2} = 2^{2} + y^{2}We pull out the right triangle and we are ready to find the trigonometric values of sine and cosine for this triangle.
Important observation:
sin(60 degrees) = cos(30 degrees)
cos(60 degrees) = sin(30 degrees)
We will not do this computation, but if we replace 30 degrees with 20 degrees and 60 degrees with 70 degrees, you will find a similar result.
sin(70 degrees) = cos(20 degrees)
cos(70 degrees) = sin(20 degrees)
In general,
sin(t) = cos(90 degrees - t)
cos(t) = sin(90 degrees - t)
We now have a couple more trigonometric formulas.
Jan 15, 18 11:55 AM
Learn how to solve radical equations with rational exponents and those with square roots
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.
Jan 15, 18 11:55 AM
Learn how to solve radical equations with rational exponents and those with square roots
Our Top Pages
Formula for percentage
Compatible numbers
Basic math test
Basic math formulas
Types of angles
Math problem solver
Algebra word problems
Surface area of a cube
Finding the average
Scale drawings
Everything you need to prepare for an important exam!
K-12 tests, GED math test, basic math tests, geometry tests, algebra tests.
Real Life Math Skills
Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.