Laws of exponents


Laws of exponents help us to simplify terms containing exponents. We derive these laws here using some good examples

A little reminder before we derive these laws of exponents:

Recall that 2 × 2 × 2 = 23

We call 2 the base and 3 the exponent.


Let us now try to perform the following multiplication:

23 × 22

23 × 22 = (2 × 2 × 2) × (2 × 2) = 2 × 2 × 2 × 2 × 2 = 25

Notice that we can get the same answer by adding the exponents

3 + 2 = 5

In the same way,

43 × 44 = (4 × 4 × 4) × (4 × 4 × 4 × 4)= 47

In general, add exponents to multiply numbers with the same base


Law #1: an × am = an + m


If a stands for any number, a × a × a × a = a4

By the same token,

If a stands for any number, a × a × a × a × a × a × a = a7

a4 × a7 = a4 + 7 = a11


Let's do  
58 / 55


We get  
5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 / 5 × 5 × 5 × 5 × 5


Rewrite the problem:

We get  
5 × 5 × 5 × 5 × 5 / 5 × 5 × 5 × 5 × 5
× 5 × 5 × 5


Notice that  
5 × 5 × 5 × 5 × 5 / 5 × 5 × 5 × 5 × 5
= 1


The reason for this is that whenever you divide something by the same thing, the answer is always 1

The problem becomes 1 × 5 × 5 × 5 = 5 × 5 × 5 = 53

Notice that you can get the same answer if you do 8 - 5 = 3

Let's do also  
715 / 79


We get  
7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 / 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7


Rewrite the problem:

We get  
7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 / 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7
× 7 × 7 × 7 × 7 × 7 × 7


Notice Once again that  
7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 / 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7
= 1


The reason for this is that whenever you divide something by the same thing, the answer is always 1

The problem becomes 1 × 7 × 7 × 7 × 7 × 7 × 7 = 76

Notice that you can get the same answer if you do 15 - 9 = 6

In general, when dividing with exponents, you can just subtract the exponent of the denominator from the exponent of the numerator.

Law #2:  
am / an
  =  am - n


What about  
79 / 715


It is the same problem as before. However, this this time 9 is on top and 15 is at the bottom

We can just use the formula  
am / an
  =  am - n


79 / 715
  =  79 - 15   =   7-6


Try now (83)4

An important observation:

In (83)4, the blue part is the base now and 4 is the exponent

Therefore, you can multiply 83 by itself 4 times.

83 × 83 × 83 × 83 = 83 + 3 + 3 + 3 = 812

Notice that you can get 12 by multiplying 3 and 4 since 3 × 4 = 12

Law #3: (an)m = an × m

All the laws of exponents are very useful, especially the last one.

The last makes it easy to simplify (65)200

Just multiply 5 and 200 to get 1000 and the answer is 61000







Recent Articles

  1. How to estimate fractions

    Dec 11, 17 08:45 AM

    Learn how to estimate fractions with this easy to follow lesson.

    Read More

New math lessons

Your email is safe with us. We will only use it to inform you about new math lessons.

            Follow me on Pinterest





Recent Lessons

  1. How to estimate fractions

    Dec 11, 17 08:45 AM

    Learn how to estimate fractions with this easy to follow lesson.

    Read More

  Our Top Pages

Formula for percentage

Compatible numbers

Basic math test

Basic math formulas

Types of angles

Math problem solver

Algebra word problems

Surface area of a cube

Finding the average 

Scale drawings

Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!


Everything you need to prepare for an important exam!

K-12 tests, GED math test, basic math tests, geometry tests, algebra tests. 


Real Life Math Skills

Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.

 Recommended

Scientific Notation Quiz

Types of Angles Quiz

Graphing Slope Quiz

Adding and Subtracting Matrices Quiz  

Factoring Trinomials Quiz 

Solving Absolute Value Equations Quiz  

Order of Operations Quiz