Number of segments

Our goal with this lesson is to derive a formula for the number of segments between n points.

To derive the formula, our strategy will be to see how many segments can be formed with 2, 3, 4, or 5 points.

Then, we will try to identify a pattern that can help us derive the formula

How many segments can be formed with 2 points?

This is an easy question. We can get one segment

1 segment with 1 point

How many segments can be formed with 3 points?

I recommend not putting the 3 points on the same line. It will be easier to keep track and count the segments

Put the points on a piece of paper as shown below:

It is still easy to see that we can make 3 segments with 3 points

3 segments with 3 points
How many segments can be formed with 4 points? Again, do not put the points on the same line

4 points

Usually people have no difficulties showing the 4 segments in blue. However, many people forget the two segments in red

So, 6 segments can be drawn with 4 points

4 points give 6 segments
How many segments can be formed with 5 points?

Things start getting a little complicated here. I will show you a way to count so you don't miss or overlook any segment

Keep in mind that the way I arrange the points is the way I believe will make it easier to count especially when you start counting the number of segments you can get with 5, 6, or 7 points

5 points
First, you can make these quick 5 segments that are shown in blue

Then, from each vertex, draw all the possibles diagonals

I am using a different color and a numbering system so you can clearly see

You can get two more from vertex #1 shown in red, 2 more from vertex #2 shown in green, and 1 more from vertex #3 shown in black

So 10 segments can be drawn with 5 points

5 points give 10 segments

Let us organize our findings. The table below will show you what we got so far and a math behind it

2 points
1 segment   =  
2 × 1 / 2
3 points
3 segments   =  
3 × 2 / 2
4 points
6 segments   =  
4 × 3 / 2
5 points
10 segments   =  
5 × 4 / 2
n points
n × ( n -1 ) / 2


The denominator is always 2, so 2 will be the denominator in the general formula

The numerator has two numbers. The number on the right side of the multiplication is always 1 less the one on the left

That is why if the number on the left is n, the one on the right is n - 1

What does n represent? Look carefully and you will see that it represents the number of points

Now that you have a formula, you can even calculate the number of segments you can get with 25 points if you like

25 × 24 / 2
= 300 segments

It is very useful to get a formula to get the number of segments with lots of points such as 25

If you tried to do the drawing above, things will get very messy

Recent Articles

  1. How To Find The Factors Of 20: A Simple Way

    Sep 17, 23 09:46 AM

    Positive factors of 20
    There are many ways to find the factors of 20. A simple way is to...

    Read More

  2. The SAT Math Test: How To Be Prepared To Face It And Survive

    Jun 09, 23 12:04 PM

    SAT math
    The SAT Math section is known for being difficult. But it doesn’t have to be. Learn how to be prepared and complete the section with confidence here.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes


Math vocabulary quizzes