Side-Splitter Theorem

The side-splitter theorem states that if a line is parallel to one side of a triangle and cross the other two sides, then the line divides those sides proportionally. Take a look at the figure below.

Side-splitter theorem

Since ST is parallel to CB, Then CS / SA = BT / TA

Note that ST is not a midline of the triangle. In other words, S is not the midpoint of CA and T is not the midpoint of BA.

Using the side-splitter theorem to solve a geometric problem.

In the figure below, AB is parallel to UT. Find x if UA = 36, TB = 9, and BS = 3.

Side-splitter theorem exercise

Since AB is parallel to UT, we can use the side-splitter theorem.

UA / AS = TB / BS

Substitute

36 / x = 9 / 3

Solve for x using cross-multiplication 

36 × 3 = x × 9

108 = 9x

Divide both sides by 9

108 / 9 = 9x / 9

12 = x

Recent Articles

  1. Area of a Rhombus

    May 26, 22 06:50 AM

    Learn how to find the area of a rhombus when the lengths of the diagonals are missing.

    Read More

Enjoy this page? Please pay it forward. Here's how...

Would you prefer to share this page with others by linking to it?

  1. Click on the HTML link code below.
  2. Copy and paste it, adding a note of your own, into your blog, a Web page, forums, a blog comment, your Facebook account, or anywhere that someone would find this page valuable.