Slope intercept form
The slope intercept form of a line is y = mx + b and m is the slope and b is the yintercept
Examples showing how to find the slopeintercept form
The goal of this lesson is to use the slope and a point on the a line to write the equation of the line in the slopeintercept form (y = mx + b).
Example #1
Given m = 2 and b = 5, write the slope intercept form.
The equation is y = 2x + 5.
Example #2
m = 5 and (1, 6) is a point on the line.
This time we have m, but b is missing, so we have to find b.
Since m = 5, y = mx + b becomes y = 5x + b.
Now, use (1, 6) to get b.
Since x = 1 and y = 6, you can replace them into the equation.
Substituting 1 for x and 6 for y gives 6 = 5×1 + b.
6 = 5×1 + b is just a linear equation that you can solve to get b.
6 = 5×1 + b
6 = 5 + b
Subtract 5 from both sides.
6 − 5 = 5 − 5 + b
1 = 0 + b
1 = b
Now since we have b, y = 5x + 1
Example #3
(2, 3) and (4, 9) are two points on a line.
This time both m and b are missing, so the first thing to do is to get m and then use m and a point, either (2, 3) or (4, 9) to get b.
Let x
_{1} = 4, y
_{1} = 9 and x
_{2} = 2, y
_{2} = 3
m = (y
_{1} − y
_{2}) / (x
_{1} − x
_{2}) = (9 − 3)/(4 − 2 ) = 6/2 = 3
Now we can use the value for m and one point to get b as already done in example #2.
Although you have two points, It does not matter which point you choose. Since both points are on the line, they will yield similar results.
Choosing (2, 3), x = 2 and y = 3
Substituting 2 for x, 3 for y, and 3 for m into the equation y = mx + b we get:
3 = 3 × 2 + b
3 = 6 + b
Subtract 6 from both sides
3 − 6 = 6 − 6 + b
3 = 0 + b
3 = b
Now we have b = 3 and m = 3, y = 3x + 3
Take the slope intercept form quiz below to test your knowledge of this lesson.

Sep 17, 20 03:57 PM
Learn clearly the difference between discrete and continuous data with good examples.
Read More
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.