Standardizing a normal distribution

Standardizing a normal distribution is to convert a normal distribution to the standard normal distribution. In real-world applications, a continuous random variable may have a normal distribution with a value of the mean that is different from 0 and a value of the standard deviation that is different from 1.

In this case, we need to standardize the normal distribution so we can use the standard normal distribution table to find areas or probabilities under the normal curve.

The units of a normal distribution are denoted by x and the units of a standard normal distribution are denoted by z.

The formula to use when standardizing a normal distribution is the standardized scores

z   =
x - µ / σ

μ and σ are the mean and standard deviation of the normal distribution of x.

Example #1

Let x be a continuous random variable that is normally distributed with a mean of 30 and a standard deviation of 4. Find the area between x = 30 and x = 39

The first step is to standardize the given normal distribution by converting x = 30 and x = 39 to respective z values using the formula above.

For x  = 30,

z   =
30 - 30 / 4

z   =
0 / 4
= 0

For x = 39,

z   =
39 - 30 / 4

z   =
9 / 4
= 2.25

Area under the normal curve between x = 30 and x = 39 is the same as the area under the curve between z = 0 and z = 2.25

P(30 < x < 39) = P(0 < z < 2.25)

Using the technique in the lesson about area under the standard normal curve we see that P(0 < z < 2.25) = 0.4878

Example #2

Let x be a continuous random variable that is normally distributed with a mean of 50 and a standard deviation of 6. Find the area between x = 41 and x = 59

The first step is to standardize the given normal distribution by converting x = 41 and x = 59 to respective z values using the formula 

z   =
x - µ / σ

For x  = 41,

z   =
41 - 50 / 6

z   =
-9 / 6
= -1.5

For x  = 59,

z   =
59 - 50 / 6

z   =
9 / 6
= 1.5

Area under the normal curve between x = 41 and x = 59 is the same as the area under the curve between z = -1.5 and z = 1.5

P(41 < x < 59) = P(-1.5 < z < 1.5)

Standard normal distribution curve

P(-1.5 < z < 1.5) = P(-1.5 < z < 0 ) + P(0 < z < 1.5)

Since the normal distribution is symmetric, P(-1.5 < z < 0 ) = P(0 < z < 1.5)

Using the standard normal distribution table, P(0 < z < 1.5) = 0.4332

P(-1.5 < z < 1.5) =0.4332 + 0.4332 = 0.8664

Recent Articles

  1. 45-45-90 Triangle

    May 01, 23 07:00 AM

    45-45-90 triangle
    What is a 45-45-90 triangle? Definition, proof, area, and easy to follow real-world examples.

    Read More

  2. Theoretical Probability - Definition, Explanation, and Examples

    Apr 24, 23 07:02 AM

    Theoretical probability versus experimental probability
    Learn how to compute the likelihood or probability of an event using the theoretical probability formula.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes