There is no rational number whose square is 2


In order to prove that there is no rational number whose square is 2, we will use indirect reasoning and we will show that this will lead to a contradiction. Keep in mind that what we are trying to prove here is that the square root of 2 cannot be a rational number. So, in order to do an indirect proof, we will assume that the square of 2 can be a rational number.

Indirect reasoning : Suppose that there is a rational number a/b

such that (a/b)2 = 2

a2/b2 = 2

After multiplying both sides by b2, we get a2 = 2b2

Since a2 = 2b2 they must have the same prime factorization. (Does this make sense? Well, if 10 = 10, then 10 has the same prime factorization as 10)

Now, we will not prove it, but any number raised to the second power has an even number of prime factors. (42 = 16 = 2  × 2 × 2 × 2. Then, 16 has 4 prime factors and 4 is an even number)

b2 will also have an even number of prime factors

If b2 has an even number of prime factors, 2b2 will have an odd number of prime factors (the 2 next to b2 adds an extra prime factor)

This is a contraction because we said before in blue that they a2 and 2b2 have the same prime factorization. However, now we are saying that they don't in the sentence shown in red.

Therefore, it was wrong for us to assume that the square of 2 can be a rational number.

Conclusion: There is no rational number whose square is 2.




Recent Articles

  1. How to Derive the Equation of an Ellipse Centered at the Origin

    Mar 13, 19 11:50 AM

    Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.

    Read More

New math lessons

Your email is safe with us. We will only use it to inform you about new math lessons.

            Follow me on Pinterest


Math quizzes

 Recommended

Scientific Notation Quiz

Graphing Slope Quiz

Adding and Subtracting Matrices Quiz  

Factoring Trinomials Quiz 

Solving Absolute Value Equations Quiz  

Order of Operations Quiz

Types of angles quiz


Tough algebra word problems

Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Recent Articles

  1. How to Derive the Equation of an Ellipse Centered at the Origin

    Mar 13, 19 11:50 AM

    Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.

    Read More

K-12 math tests


Everything you need to prepare for an important exam!

K-12 tests, GED math test, basic math tests, geometry tests, algebra tests. 

Real Life Math Skills

Learn about investing money, budgeting your money, paying taxes, mortgage loans, and even the math involved in playing baseball.