Prove that square root of 5 is irrational
To prove that square root of 5 is irrational, we will use a proof by contradiction.
What is a proof by contradiction ?
Suppose we want to prove that a math statement is true. Simply put, we assume that the math statement is false and then show that this will lead to a contradiction. If it leads to a contradiction, then the statement must be true
To show that
√5
is an irrational number, we will assume that it is rational.
Then, we need to find a contradiction when we make this assumption.
If we are going to assume that
√5
is rational, then we need to understand what it means for a number to be
rational.
Basically, if square root of 5 is rational, it can be written as the ratio of two numbers as shown below:
Square both sides of the equation above
Multiply both sides by y
^{2}
5 × y
^{2} =
x^{2}
/
y^{2}
× y
^{2}
We get 5 × y
^{2} = x
^{2}
In order to prove that square root of 5 is irrational, you need to understand also this important concept.
{
Another important
concept before we finish our proof: Prime factorization
Key question: is the number of prime factors for a number raised to the second power an even or odd number?
For example, 6
^{2}, 12
^{2}, and 15
^{2}
6
^{2} = 6 × 6 = 2 × 3 × 2 × 3 (4 prime factors, so even number)
12
^{2} = 12 × 12 = 4 × 3 × 4 × 3 = 2 × 2 × 3 × 2 × 2 × 3 (6 prime factors, so even number)
15
^{2} = 15 × 15 = 3 × 5 × 3 × 5 = (4 prime factors, so even number)
There is a solid pattern here to conclude that any number squared will have an even number of prime factors.
In order words, x
^{2} has an even number of prime factors.
}
Let's finish the proof then!
5 × y
^{2} = x
^{2}
Since 5 × y
^{2} is equal to x
^{2}, 5 × y
^{2} and x
^{2} must have the
same number of prime factors.
We just showed that
x
^{2} has an even number of prime factors.
y
^{2} has also an even number of prime factors.
5 × y
^{2} will then have an odd number of prime factors.
The number 5 counts as 1 prime factor, so 1 + an even number of prime factors is an odd number of prime factors.
5 × y
^{2} is the same number as x
^{2}. However, 5 × y
^{2} gives an odd number of prime factor while x
^{2} gives an even number of prime factors.
This is a contradiction since a number cannot have an odd number of prime factors and an even number of prime factors at the same time
The assumption that square root of 5 is rational is wrong. Therefore, square of 5 is irrational

Jan 20, 20 03:17 PM
Topnotch information for those who want to become a high school math teacher. All important stuff that you need to know before making a move can be found right here on this website.
Read More
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.