Check out these 3 great word problems involving quadratic equations in this lesson.
Problem #1: The quadratic equation for the cost in dollars of producing automobile tires is given below where x is the number of tires the company produces. Find the number of tires that will minimize the cost.
C = 0.00002x^{2} - 0.04x + 38Solution:
The standard form of a quadratic equation is ax² + bx + c. To solve this problem, we just need 2 important concepts about quadratic equations. First, when we are trying to maximize or minimize, we need to use the formula below that will help us find the x-coordinate of the vertex. Second, if a > 0, the vertex is a minimum. if a < 0, the vertex is a maximum.
Since a = 0.00002 and 0.00002 is bigger than 0, the quadratic equation will give a minimum.
Problem #2: You want to frame a collage of pictures with a 9-ft strip of wood. What dimensions will help you maximize the area?
Solution:
First, we need to find the quadratic equation.
Area = l × w Perimeter = 2l + 2w
9 = 2l + 2w. Solve for l and replace l in the formula for the area.
9 - 2w = 2l
Problem #3: The sum of two numbers is 12 and their product is 35. What are the two numbers?
Solution:
Let n and m be the two numbers.
n + m = 12 (1)
n × m = 35 (2)
Using (1), n = 12 - m
(12 - m) × m = 35
12m - m^{2} = 35Mar 13, 19 11:50 AM
Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.
Basic math formulas
Algebra word problems
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.
Recommended
Scientific Notation Quiz
Graphing Slope Quiz
Adding and Subtracting Matrices Quiz
Factoring Trinomials Quiz
Solving Absolute Value Equations Quiz
Order of Operations Quiz
Types of angles quiz
Mar 13, 19 11:50 AM
Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.