Surface area of a cone

The surface area of a cone can be derived from the surface area of a square pyramid.

Start with a square pyramid and just keep increasing the number of sides of the base. After a very large number of sides, you can see that the figure will eventually look like a cone.This is shown below:

Pyramid to cone
Pyramid to cone

This observation is important because we can use the formula of the surface area of a square pyramid to find that of a cone.
Pyramid with slant height l

l is the slant height.

The area of the square is s2

The area of one triangle is (s × l)/2

Since there are 4 triangles, the area is 4 × (s × l)/2 = 2 × s × l

Therefore, the surface area, call it SA is:

SA = s2  +  2 × s × l .

Generally speaking, to find the surface area of any regular pyramid where A is the area of the base, the perimeter is P, and the slant height is l, we use the following formula:

S = A + 1/2 (P × l)

Again A is the area of the base. For a figure with 4 sides, A = s2 with s = length of one side.

Where does the 1/2 (P × l) come from?

Let s be the length of the base of a regular pyramid. Then, the area of one triangle is (s × l)/2

For n triangles and this also means that the base of the pyramid has n sides, we get ( n × s × l)/2

Now P = n × s. When n = 4, of course, P = 4 × s as already shown.

Therefore, after replacing n × s by P, we get S = A + 1/2 (P × l)

Let us now use this fact to derive the formula of the surface area of a cone

How to derive the formula to get the surface area of a cone?

Cone with slant height l

For a cone, the base is a circle, so A = π × r2

P = 2 × π × r

To find the slant height, l, just use the Pythagorean Theorem

l = r2 + h2

l = √ (r2 + h2)

Putting it all together, we get:

S = A + 1/2 (P × l)

S = π × r2 + 1/2 ( 2 × π × r × √ (r2 + h2)

S = π × r2 + π × r × √ (r2 + h2)

3 examples showing how to find the surface area of a cone.


Example #1:

Find the surface area of a cone with a radius of 4 cm, and a height of 8 cm

S = π × r2 + π × r × √ (r2 + h2)

S = 3.14 × 42 + 3.14 × 4 × √ (42 + 82)

S = 3.14 × 16 + 12.56 × √ (16 + 64)

S = 50.24 + 12.56 × √ (80)

S = 50.24 + 12.56 × 8.94

S = 50.24 + 112.28

S = 162.52 cm2

Example #2:

Find the surface area of a cone with a radius of 9 cm, and a height of 12 cm

S = π × r2 + π × r × √ (r2 + h2)

S = 3.14 × 92 + 3.14 × 9 × √ (92 + 122)

S = 3.14 × 81 + 28.26 × √ (81 + 144)

S = 254.34 + 28.26 × √ (225)

S = 254.24 + 28.26 × 15

S = 254.24 + 423.9

S = 678.14 cm2

Recent Articles

  1. Calculate the Conditional Probability using a Contingency Table

    Mar 29, 23 10:19 AM

    Contingency table
    Learn to calculate the conditional probability using a contingency table. This contingency table can help you understand quickly and painlessly.

    Read More

  2. Rational Numbers - Definition and Examples

    Mar 15, 23 07:45 AM

    Rational numbers
    To learn about rational numbers, write their decimal expansion, and recognize rational numbers that are repeating decimals and terminating decimals.

    Read More

Tough algebra word problems

100 Tough Algebra Word Problems.

If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes