Here, you will learn how to solve literal equations with some carefully chosen examples. What is a literal equation? It is an equation that has many variables and we need to solve for one of the variables.
For example, y = mx + b is a literal equation. See below how we solve for x as we solve for x in 8 = 2x + 4
y = mx + b |
8 = 2x + 4 |
We can see that the process is similar whether we are solving a literal equation or not.
All we need to do is to isolate things. For (8 - 4) / 2 = x though, we can take a step further by doing the math since we are dealing with numbers.
Therefore, x = (8 - 4) / 2 = 4 / 2 = 2
Hopefully, this example was clear enough to put you on the right track.
1)
Solve 2a + b = d for b
2a + b = d
We need to isolate b, therefore, get rid of 2a by subtracting 2a from both sides of the equation.
2a - 2a + b = d - 2a
0 + b = d - 2a
b = d - 2a
2)
Solve V = lwh for w.
We need to get rid of lh. Rewrite the equation.
V = lhw
Get rid of lh by dividing both sides of the equation by lh
V / lh = (lh / lh)w
V / lh = 1w
V / lh = w
3)
Subtract a from both sides
3x - a = a - a + b + c
3x - a = 0 + b + c
3x - a = b + c
Subtract b from both sides
3x - a - b = b - b + c
3x - a - b = 0 + c
3x - a - b = c
4)
Solve 2(x + y) = z for y
First isolate x + y by getting rid of 2. To get rid of 2, divide both sides by 2.
2 / 2 (x + y) = z / 2
1(x + y) = z / 2
x + y = z / 2
Subtract x from both sides of the equations
x - x + y = (z / 2) - x
0 + y = (z / 2) - x
y = (z / 2) - x
Mar 13, 19 11:50 AM
Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.
Basic math formulas
Algebra word problems
New math lessons
Your email is safe with us. We will only use it to inform you about new math lessons.
Recommended
Scientific Notation Quiz
Graphing Slope Quiz
Adding and Subtracting Matrices Quiz
Factoring Trinomials Quiz
Solving Absolute Value Equations Quiz
Order of Operations Quiz
Types of angles quiz
Mar 13, 19 11:50 AM
Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.